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In dense homogeneous ordered media (e.g. crystal), 
light scatters only in the forward direction

38

Credit to Prof. Marc Wuilpart, University of Mons, Belgium

 λ is much larger than the spacing between scattering centres.

 There always exists an elementary volume dV2 from which the scattered field 
will destructively interferes with that from dV1.

 This is true for all angles θ except in the forward direction.
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In dense non-homogeneous (disordered) media,
light also scatters laterally

39

Credit to Prof. Marc Wuilpart, University of Mons, Belgium

 Density fluctuation ⇒ the number of scattering centres in volume dV1 could be 
different to that of volume from dV2 ⇒ the scattered wave in direction θ does 
not completely vanish.

 If the local perturbations (local modifications of the optical properties) are 
separated by distances in the range of λ or more and if they are randomly 
distributed, the case is similar to that of the gas.

 Any imperfection that 
locally modifies the optical 
properties of the medium 
(density fluctuation, flaws, 
impurities) results in the 
presence of lateral 
scattering.

 Case of glasses!
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Origin of scattering

ε

ε1

Incident plane wave

Scattered wave

2a

First case: a ≥ λ Mie scattering

Gustav Mie (1868-1957)

λ

Diffraction

Dominantly forward scattering
Moderate spectral dependence

~ λ
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Origin of scattering

ε

ε1

Incident plane wave

Scattered wave

2a

Second case: a << λ Rayleigh scattering

Baron Rayleigh (1842-1919)

λ

No wavefront distortion All-direction scattering

Strong spectral
dependence ~ λ− 4

John William Strutt

Electromagnetic radiant
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Basic mechanism of Rayleigh scattering
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Incident electric field
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• Since a << λ the particle sees a uniform oscillating E-field
• The E-field induces surface charges at the dielectric boundaries

of the particle
• Assuming ε1 ≅ ε (small medium fluctuation) the surface

charges induce a dipole moment
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Radiation from an oscillating dipole
Hertzian dipole

(Rayleigh)
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Total scattered power
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Scattering loss coefficient αs
S

∆l

∆V = S ∆l

34
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Let assume the scattering particles densely packed (no gap between particles)
 Particles density (number per unit volume) N = 1 / δV
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Scattering loss coefficient αs
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∆ε is function of the material density ρ and the temperature T:
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From the theory of thermodynamic fluctuations: ( )
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Tf is a fictitious temperature representing the temperature when all density
fluctuations get frozen (~solidification). 
βc is the isothermal compressibility: 
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Scattering loss coefficient αs
23
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Since silica is a isotropic solid state material, the following term can be made explicit
using the theory of photoelasticity:

4
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T

n pερ
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n: the refractive index;   p12 = 0.286   photoelastic coefficient

It is also possible to use the Clausius-Mossoti relation. 

 Rayleigh scattering loss coefficient:
3
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It is better to choose for a material with low refractive index and compressibility. 
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2 main contributions for Rayleigh scattering in 
optical fibres

48

Silica glass is characterized by nanometric fluctuations of ε⇒ Rayleigh scattering.

Local density fluctuation 
frozen in the glass during 
cooling

The critical parameter is 
the fictitious temperature

Local fluctuations of
composition (doping)

N is the number of doping
molecules per unit of 
volume

Credit to Prof. Marc Wuilpart, University of Mons, Belgium
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In the forward direction, all the scattered wavelets 
sum up constructively

49

 The incident light is assumed to be locally a plane wave. A and B are two random 
scattering centres.

 The wave scattered by B is necessarily in phase with the wave priorily scattered by 
A. Extrapolated to a large number of centres, all scattered waves show a constant phase 
relationship with the incident wave. The phase lag between forward scattered waves and 
incident wave is an interpretation of the wave propagation slowing (refractive index).

Credit to Prof. Marc Wuilpart, University of Mons, Belgium
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There are two main components to scalar scattering

50

Credit to Prof. Marc Wuilpart, University of Mons, Belgium

 Adiabatic density fluctuations
 Pressure fluctuations mainly 

results from acoustical 
waves propagation
 described by a wave 
equation

 The scattered wave is 
frequency-shifted

 Inelastic scattering
 Brillouin scattering

 Isobaric density fluctuations
 Entropy fluctuations are 

described by a diffusion 
equation

 The scattered wave is not 
frequency-shifted

 Elastic scattering
 Rayleigh scattering



EDPO - Nonlinear Fibre Optics – Prof. Luc Thévenaz 

Physics behind inelastic scatterings

51

• Oscillatory movement of the
entire molecular chain.

• Classical wave, slow vibration 
transporting high momentum.

• Acoustic-like vibration.

• Vibrational oscillation inside the
molecular chain.

• Quantum excited state, fast
vibration with small momentum.

• Optical-like vibration.

k

ω

Acoustic
branch

Optical
branch

In a solid state constituted of polyatomic molecules, the cohesive force between 
molecules allows a collective vibration into two distinct vibrational modes:

Energy-momentum diagram
(dispersion curve)
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Optical effect of inelastic scatterings

52

Optical branch: Raman scattering
High energy phonons
with low momentum
Large spectral shift (~12 THz or 
96 nm at λo=1550 nm in SiO2) and 
non-strict phase matching.

Acoustic branch: Brillouin scattering
Low energy phonons
with high momentum
Small spectral shift (~11 GHz or 
0.07 nm at λo=1550 nm in SiO2) and 
strict phase matching.
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Optical effect of inelastic scatterings

53

Optical branch: Raman scattering
High energy phonons
with low momentum
Large spectral shift (~12 THz or 
96 nm at λo=1550 nm in SiO2) and 
non-strict phase matching.

Acoustic branch: Brillouin scattering
Low energy phonons
with high momentum
Small spectral shift (~11 GHz or 
0.07 nm at λo=1550 nm in SiO2) and 
strict phase matching.

νο νANTI-STOKES scatteringsSTOKES scatterings

Rayleigh scattering

Brillouin scattering Brillouin scattering

Raman scatteringRaman scattering
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Spontaneous inelastic scatterings

54

Spontaneous inelastic scatterings are generated by thermal phonons
 The average number of phonons is governed by Bose-Einstein statistics

Spontaneous inelastic scatterings are purely thermally activated
and are thus linear processes.

n = 1

e
h Ω
kT - 1

•   Anti-Stokes scattering annihilates a phonon
 Scattering coefficient is proportional to   n

n

W

n + WCAS ~ n = 1
e

h Ω
kT - 1

•   Stokes scattering creates a phonon
 Scattering coefficient proportional to   +1 n

n

W

n - W

CS ~ n + 1 = e
h Ω
kT

e
h Ω
kT - 1

Stokes shift Ω Average phonon number 

Raman 13.2 THz 0.14 Anti-Stokes < Stokes
Brillouin 11 GHz 570 Anti-Stokes ~ Stokes
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Spectral characteristics of inelastic scatterings

55
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The linewidth of Brillouin scattering is
ruled by the acoustic loss (lifetime ~6ns)
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Brillouin: Energy-momentum conservation

56
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Energy conservation:

Momentum conservation:

Splitting this vectorial equation into components:
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Squaring and combining these equations using the relationships
and the energy conservation                  :                  
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   
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2 possibilities in single mode fibres: θ=0  Ω=0 No effect, no forward scattering!
θ=π  Ω=2nVa/λo Backward scattering, max. frequency shift
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Mechanisms behind stimulated scatterings

57

Interferences Electrostriction+
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Principle of Brillouin stimulated scattering

58

Interference +Electrostriction

Photoelasticity
+ Diffraction

Pump
wave

Signal
wave

Acoustic
wave
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Principle of Brillouin stimulated scattering

59

Pump wave

Signal wave

Beat signal
intensity

Acoustic
idler wave

Refractive
index grating

Optical power
transfer
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Principle of Brillouin stimulated scattering

60

Pump wave

Signal wave

Beat signal
intensity

Acoustic
idler wave

Refractive
index grating

Optical power
transfer

νο

ν

ν0+νΒν0−νΒ

Gain
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Grating picture of Brillouin scattering

61

In steady state conditions the grating formed by the acoustic wave
through the interference of the pump and signal waves automatically
creates a matched coupling.

Pump wave νp , φp

Signal wave νs , φs
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Grating picture of Brillouin scattering

62

In steady state conditions the grating formed by the acoustic wave
through the interference of the pump and signal waves automatically
creates a matched coupling.

Pump wave νp , φp

Signal wave νs , φs

Frequency shift: -(νp - νs)
Phase shift:        φs – φp
Constructive interference

 Gain

Frequency shift: +(νp - νs)
Phase shift:      π + φp – φs
Destructive interference

 Loss (depletion)

All wave properties are properly transformed, except:
 Polarization of the incident wave is preserved
 The coupling can be temporarily unmatched due to the

inertial response of the acoustic wave (τ ~12 ns).
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Stimulated Raman scattering

63

For a forward propagating pump and a backward signal the interaction is
governed by the following set of coupled equations:

P P
R P S P P

S

S
R P S S S

dI
g I I I

dz
dI

g I I I
dz

ν
α

ν

α


= − −


 = − +

In absence of pump depletion:

(0)( ) (0)e R P eff Sg I L L
S SI L I α−=

(1 e ) /PL
eff PL α α−= −with

Nonlinear effective length

m
W

1310Rg −


1 W of pump power through 1 km of fibre


Net gain = 1.6
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Cascaded Raman generation

• Each generated 
Stokes wave can act 
as a pump to generate 
an additional order

64



EDPO - Nonlinear Fibre Optics – Prof. Luc Thévenaz 

Stimulated Brillouin scattering

65

For a forward propagating pump and a backward signal the interaction is
governed by the following set of coupled equations for the amplitudes:
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Stimulated Brillouin scattering

66
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Brillouin amplifier is a linear system

67

 2 appended fibers is equivalent to 1 fiber with the summed gain spectra:

This description can be extended to N fibers and N pumps

1 1 2 2( ) , ( ) ,B Bg L g Lν ν

1 2
1 22 2 1 1

[ ( ) ( ) ]( ) ( )
1 2( ) e e ( ) e ( ) ,B B PumpB Pump B Pump

L L
g g I Lg I L g I L L L

out in inI I I L L L
ν νν νν ν ν

+
= = = +

 2 pumps in 1 fibre is equivalent to 1 pump with the summed gain spectra:
1 2

1 2
1 1 2 2

[ ( ) ( ) ]
( ) ( )

1 2( ) e ( ) e ( ),
P P

B B Pump
Pump PumpB P B P

I I
g g I L

I Ig I L g I L
out in in Pump P PI I I I I I
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Broadband Brillouin gain by pump modulation

68

PumpGain

Loss

ν
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Broadband Brillouin gain by pump modulation

69

PumpGain

Loss

The effective gain/loss spectrum can be shaped
by properly modulating the pump

ν

( )( ) ( ) peff
B B pump

Ig g I
ν

ν ν= ⊗ Convolution between the natural
Brillouin gain and the pump spectra



EDPO - Nonlinear Fibre Optics – Prof. Luc Thévenaz 

Amplifiers based on stimulated scatterings

70

• Raman-based amplifiers are very attractive: large bandwidth, wavelength
flexibility and low noise. But: low gain  high pump power

Pump

• Brillouin-based amplifiers also show a good wavelength flexibility and give
a much higher gain, but very limited bandwidth and poor noise figure.

• Noise is determined by the amount of spontaneous scattering, which is
scaled by the average number of thermally-created phonons (0.14 per mode 
for Raman scattering, 570 per mode for Brillouin scattering).

• Stimulated scatterings may realise the closest approximation of fully
distributed amplification, considered as an ideal case.
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Brillouin limits the power handling capacity

71
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Raman and Brillouin lasers

72

• Raman-based fibre lasers can generate light at wavelength well separated
from the pump (new wavelength) and even using cascaded emission.

• Brillouin-based fibre lasers can show a sub-mW threshold and very high
coherence (sub-kHz).

• Lasers based on stimulated scatterings are easily realized by looping 
back an amplifier upon itself.

Pump
wave

Signal
wave

Acoustic
idler wave Det.

Resonance
tracking
circuitLaser

under test

PZT

Fibre
ring

Pump Brillouin
emission

Brillouin laser emission

50/50

5/95
Isolator
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Brillouin Fibre Laser Gyroscope

73
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Brillouin Fibre Laser Gyroscope

74
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