Nonlinear Fibre Optics

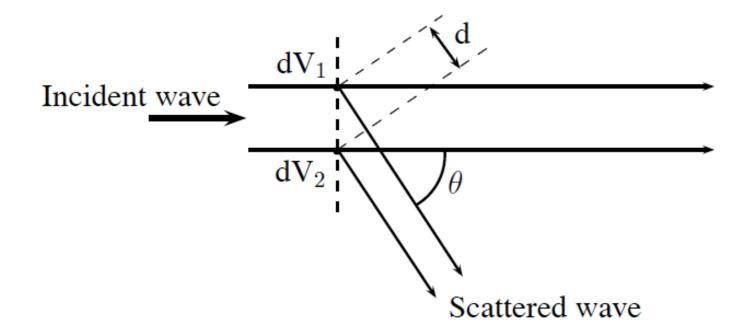
Prof. Luc Thévenaz

Prof. Camille-Sophie Brès

Institute of Electrical Engineering Doctoral School in Photonics

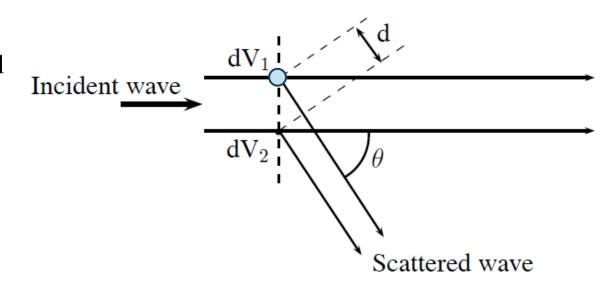
In dense homogeneous ordered media (e.g. crystal), light scatters only in the forward direction

- \triangleright λ is much larger than the spacing between scattering centres.
- There always exists an elementary volume dV_2 from which the scattered field will **destructively interferes** with that from dV_1 .
- \triangleright This is true for all angles θ except in the forward direction.

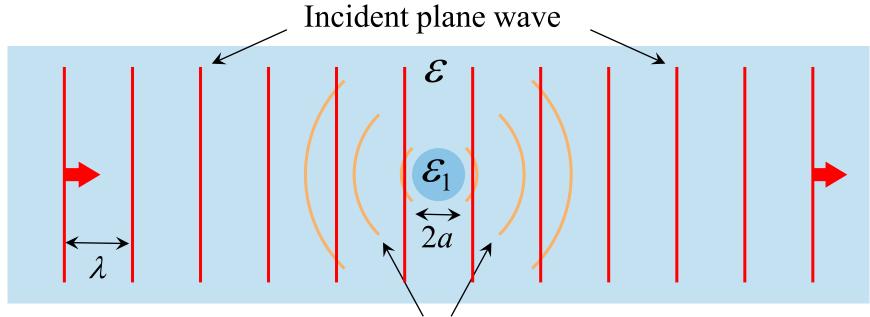


In dense non-homogeneous (disordered) media, light also scatters laterally

- **Density fluctuation** \Rightarrow the number of scattering centres in volume dV_1 could be different to that of volume from $dV_2 \Rightarrow$ the scattered wave in direction θ does not completely vanish.
- For the local perturbations (local modifications of the optical properties) are separated by distances in the range of λ or more and if they are randomly distributed, the **case is similar to that of the gas**.
- Any imperfection that locally modifies the optical properties of the medium (density fluctuation, flaws, impurities) results in the presence of lateral scattering.
- Case of glasses!

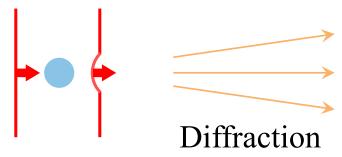


Origin of scattering



Scattered wave

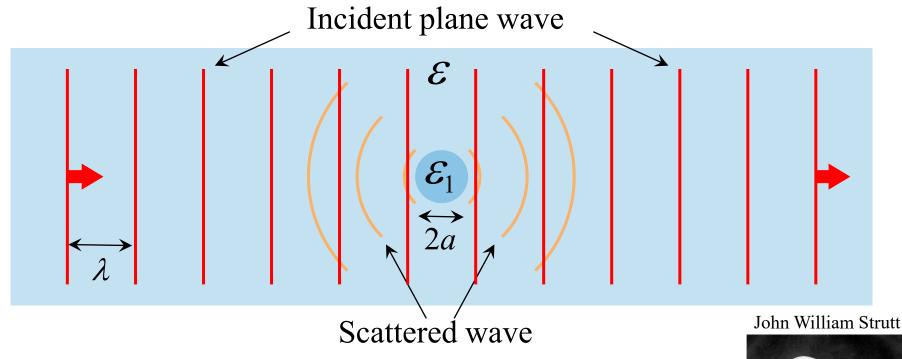
First case: $a \ge \lambda$ Mie scattering



Dominantly forward scattering Moderate spectral dependence

Gustav Mie (1868-1957)

Origin of scattering

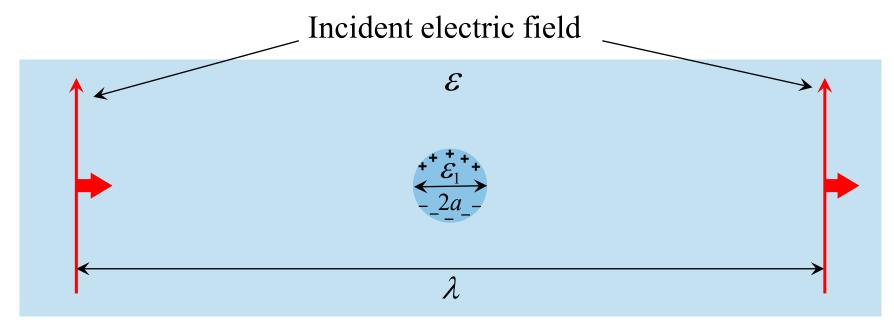


Second case: $a \ll \lambda$ Rayleigh scattering

No wavefront distortion All-direction scattering Strong spectral Strong spectral dependence $\sim \lambda^{-4}$

Baron Rayleigh (1842-1919)

Basic mechanism of Rayleigh scattering

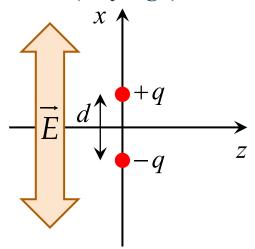


- Since $a \ll \lambda$ the particle sees a uniform oscillating E-field
- The E-field induces surface charges at the dielectric boundaries of the particle
- Assuming $\varepsilon_1 \cong \varepsilon$ (small medium fluctuation) the surface charges induce a dipole moment $\vec{p} = 4\pi\varepsilon \, a^3 \, \frac{\varepsilon_1 \varepsilon}{2c} \, \vec{E}$

Radiation from an oscillating dipole

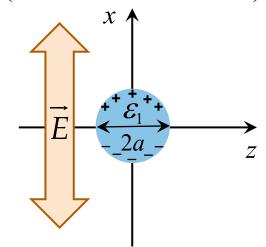
Hertzian dipole

(Rayleigh)



Particle dipole

(Einstein-Smoluchowski)



Dipole moment: $\vec{p} = q d\hat{x}$

Dipole moment: $\vec{p} = 4\pi\varepsilon \, a^3 \, \frac{\varepsilon_1 - \varepsilon}{3\varepsilon} \, \vec{E}$

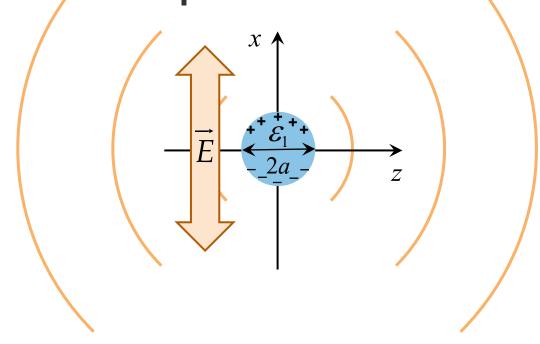
Radiated E-far field:

Radiated E-far field:

$$\vec{E}_{far-field} = \frac{jkid}{4\pi\varepsilon cr} \sin\theta e^{-jkr} \hat{\theta} \qquad \vec{E}_{far-field} = -\frac{k^2a^3}{r} \frac{\varepsilon_1 - \varepsilon}{3\varepsilon} |\vec{E}| \sin\theta e^{-jkr} \hat{\theta}$$

Current:
$$i = j\omega q \implies id = j\omega |\vec{p}|$$

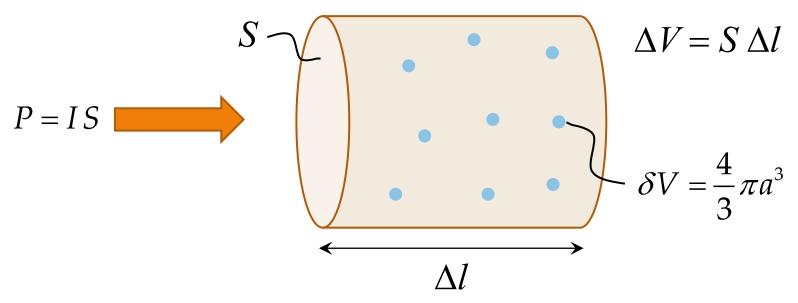
Total scattered power



$$P_{s} = \int_{0}^{2\pi\pi} \int_{0}^{\pi} \varepsilon c \frac{\left| \overrightarrow{E}_{far-field} \right|^{2}}{2} r^{2} \sin\theta \, d\theta \, d\phi$$

$$= \frac{4\pi\varepsilon c}{3} k^4 a^6 \left(\frac{\varepsilon_1 - \varepsilon}{3\varepsilon}\right)^2 |\overrightarrow{E}|^2 = \frac{8\pi}{3} k^4 a^6 \left(\frac{\varepsilon_1 - \varepsilon}{3\varepsilon}\right)^2 I \quad \text{with} \quad I = \frac{\varepsilon c}{2} |\overrightarrow{E}|^2$$

Scattering loss coefficient $lpha_{ m s}$



Let assume the scattering particles densely packed (no gap between particles)

 \rightarrow Particles density (number per unit volume) $N = 1 / \delta V$

Power loss in the volume ΔV : $\Delta P = -\alpha_s P \Delta l$

$$-N P_s \Delta V = -\alpha_s P \Delta l$$
$$-N P_s S \Delta l = -\alpha_s P \Delta l$$

$$\alpha_s = NS \frac{P_s}{P} = \frac{1}{\delta V} \frac{P_s}{I} = \frac{8}{3} \frac{\pi^3}{\lambda_o^4} \left\langle \left(\Delta \varepsilon \right)^2 \right\rangle \delta V$$

with
$$\Delta \varepsilon = \varepsilon_1 - \varepsilon$$

Scattering loss coefficient $\alpha_{\rm s}$

$$\alpha_{s} = \frac{8}{3} \frac{\pi^{3}}{\lambda_{o}^{4}} \left\langle \left(\Delta \varepsilon\right)^{2} \right\rangle \delta V$$

 $\Delta \varepsilon$ is function of the material density ρ and the temperature T:

$$\Delta \varepsilon = \left(\frac{\partial \varepsilon}{\partial \rho}\right)_{T} \Delta \rho + \left(\frac{\partial \varepsilon}{\partial T}\right)_{\rho} \Delta T \quad \text{Normally for solid state materials: } \left(\frac{\partial \varepsilon}{\partial \rho}\right)_{T} >> \left(\frac{\partial \varepsilon}{\partial T}\right)_{\rho}$$

$$\rightarrow \left\langle \left(\Delta \varepsilon \right)^2 \right\rangle \cong \left(\frac{\partial \varepsilon}{\partial \rho} \right)_T^2 \left\langle \left(\Delta \rho \right)^2 \right\rangle$$

From the theory of thermodynamic fluctuations: $\left\langle \left(\Delta \rho \right)^2 \right\rangle = \frac{\rho^2}{\delta V} k_B T_f \beta_c$

 T_f is a fictitious temperature representing the temperature when all density fluctuations get frozen (~solidification).

 β_c is the isothermal compressibility: $\beta_c = -\frac{1}{\delta V} \left(\frac{\partial \delta V}{\partial P} \right)_T = 6.9 \ 10^{-11} \frac{\text{m}^2}{\text{J}} \text{ in SiO}^2$

Scattering loss coefficient α_s

$$\alpha_{s} = \frac{8}{3} \frac{\pi^{3}}{\lambda_{o}^{4}} \left(\rho \frac{\partial \varepsilon}{\partial \rho} \right)_{T}^{2} k_{B} T_{f} \beta_{c}$$

Since silica is a isotropic solid state material, the following term can be made explicit using the theory of photoelasticity:

$$\left(\rho \frac{\partial \varepsilon}{\partial \rho}\right)_T = n^4 p_{12}$$
 n : the refractive index; $p_{12} = 0.286$ photoelastic coefficient

It is also possible to use the Clausius-Mossoti relation.

Rayleigh scattering loss coefficient:
$$\alpha_s = \frac{8}{3} \frac{\pi^3}{\lambda_o^4} n^8 p_{12}^2 k_B T_f \beta_c$$

It is better to choose for a material with low refractive index and compressibility.

2 main contributions for Rayleigh scattering in optical fibres

Silica glass is characterized by **nanometric fluctuations** of $\varepsilon \Rightarrow$ Rayleigh scattering.

Local density fluctuation frozen in the glass during cooling

$$\alpha_{Rd} = \frac{8}{3} \frac{\pi^3}{\lambda_o^4} n^8 \, p_{12}^2 \, k_B T_f \beta_c$$

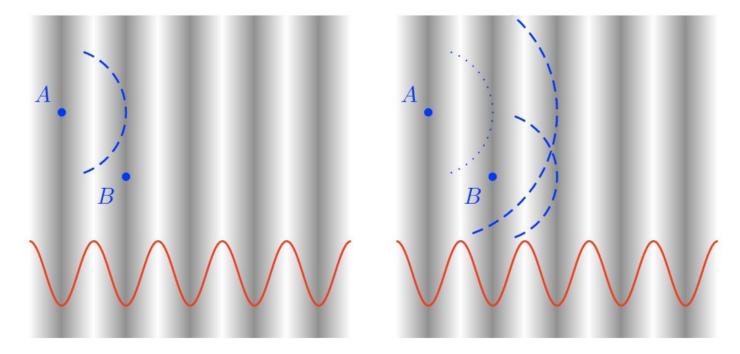
The critical parameter is the fictitious temperature

Local fluctuations of composition (doping)

$$\alpha_{Rc} = \frac{8}{3} \frac{\pi^3}{\lambda_o^4} \left(\frac{\partial n^2}{\partial N} \right)^2 \left\langle \left(\delta N \right)^2 \right\rangle$$

N is the number of doping molecules per unit of volume

In the forward direction, all the scattered wavelets sum up constructively



- ➤ The incident light is assumed to be **locally a plane wave**. A and B are two random scattering centres.
- The wave scattered by B is necessarily in phase with the wave priorily scattered by A. Extrapolated to a large number of centres, all scattered waves show a constant phase relationship with the incident wave. The phase lag between forward scattered waves and incident wave is an interpretation of the wave propagation slowing (refractive index).

There are two main components to scalar scattering

$$\Delta \rho = \left(\frac{\partial \rho}{\partial p}\right) \Delta p + \left(\frac{\partial \rho}{\partial s}\right) \Delta s$$

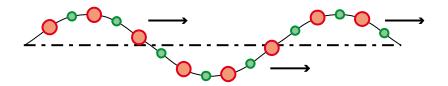
- Adiabatic density fluctuations
- > Pressure fluctuations mainly results from acoustical waves propagation
 - **→** described by a wave equation
- The scattered wave is frequency-shifted
- > Inelastic scattering
- > Brillouin scattering

- Isobaric density fluctuations
- Entropy fluctuations are described by a diffusion equation

- The scattered wave is not frequency-shifted
- > Elastic scattering
- > Rayleigh scattering

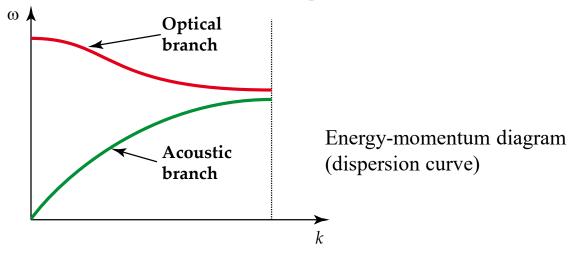
Physics behind inelastic scatterings

In a solid state constituted of *polyatomic* molecules, the cohesive force between molecules allows a collective vibration into two distinct vibrational modes:



- Oscillatory movement of the entire molecular chain.
- *Classical* wave, *slow* vibration transporting *high momentum*.
- Acoustic-like vibration.

- Vibrational oscillation inside the molecular chain.
- Quantum excited state, fast vibration with small momentum.
- *Optical*-like vibration.



Optical effect of inelastic scatterings

Optical branch: Raman scattering

High energy phonons with **low momentum**

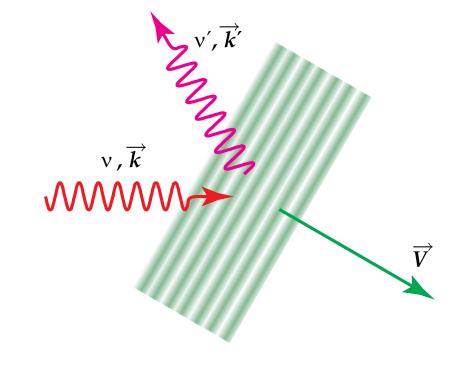
Large spectral shift (\sim 12 THz or 96 nm at λ_0 =1550 nm in SiO₂) and **non-strict** phase matching.

Acoustic branch: Brillouin scattering

Low energy phonons with high momentum

Small spectral shift (~11 GHz or 0.07 nm at λ_0 =1550 nm in SiO₂) and **strict** phase matching.

O = Si = O hv hv' $E_{Vib} = hv_R$



Optical effect of inelastic scatterings

Optical branch: Raman scattering

High energy phonons with **low momentum**

Large spectral shift (\sim 12 THz or 96 nm at λ_0 =1550 nm in SiO₂) and

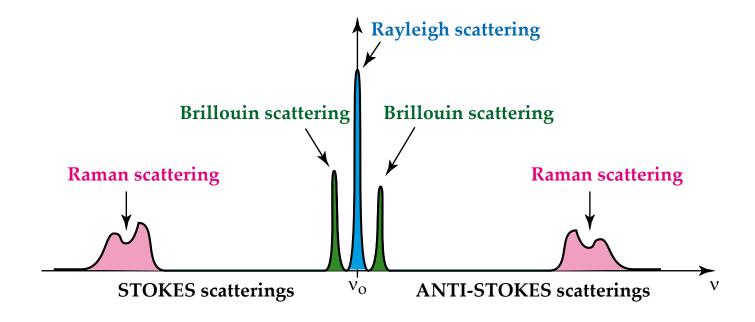
non-strict phase matching.

Acoustic branch: Brillouin scattering

Low energy phonons with high momentum

Small spectral shift (\sim 11 GHz or 0.07 nm at λ_o =1550 nm in SiO₂) and

strict phase matching.



Spontaneous inelastic scatterings are **purely thermally activated** and are thus **linear** processes.

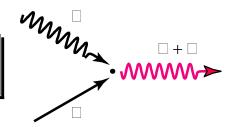
Spontaneous inelastic scatterings are generated by thermal phonons

→ The average number of phonons is governed by **Bose-Einstein statistics**

$$\bar{n} = \frac{1}{e^{\frac{h\Omega}{kT}} - 1}$$

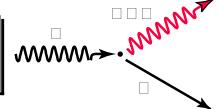
- Anti-Stokes scattering annihilates a phonon
 - \rightarrow Scattering coefficient is proportional to \hbar

$$C_{AS} \sim \bar{n} = \frac{1}{e^{\frac{h\Omega}{kT}} - 1}$$



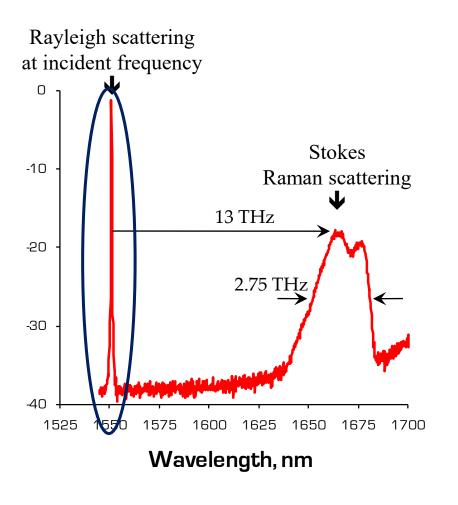
- Stokes scattering creates a phonon
 - → Scattering coefficient proportional to 7+1

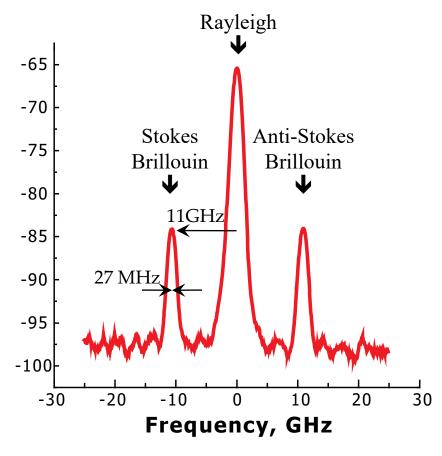
$$C_S \sim \bar{n} + 1 = \frac{e^{\frac{h\Omega}{kT}}}{e^{\frac{h\Omega}{kT}} - 1}$$



	Stokes shift Ω	Average phonon number	
Raman	13.2 THz	0.14	Anti-Stokes < Stokes
Brillouin	11 GHz	570	Anti-Stokes ~ Stokes

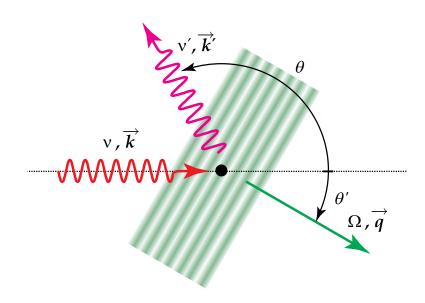
Spectral characteristics of inelastic scatterings





The *linewidth* of Brillouin scattering is ruled by the *acoustic loss* (lifetime ~6ns)

Brillouin: Energy-momentum conservation



Energy conservation:

$$h\nu = h\nu' + h\Omega$$

Momentum conservation:

$$\hbar \vec{k} = \hbar \vec{k}' + \hbar \vec{q}$$

Splitting this vectorial equation into components:

$$\begin{cases} k' \sin \theta = q \sin \theta' \\ k = k' \cos \theta + q \cos \theta' \end{cases}$$

Squaring and combining these equations using the relationships $v = kc / 2\pi$, $v' = k'c / 2\pi$, $\Omega = qV_a / 2\pi$ and the energy conservation $v' = v - \Omega$: $4V_a^2 v(v-\Omega)\sin^2\frac{\theta}{2} = (c^2 - V_a^2)\Omega^2$

Solving for
$$\Omega$$
 yields: $\Omega = 2\frac{V_a}{c}v\sin\frac{\theta}{2}\sqrt{1-\left(\frac{V_a}{c}\right)^2\cos^2\frac{\theta}{2}} - 2\left(\frac{V_a}{c}\right)^2v \overset{V_a \ll c}{\simeq} 2\frac{V_a}{c}v\sin\frac{\theta}{2} = 2n\frac{V_a}{\lambda_o}\sin\frac{\theta}{2}$

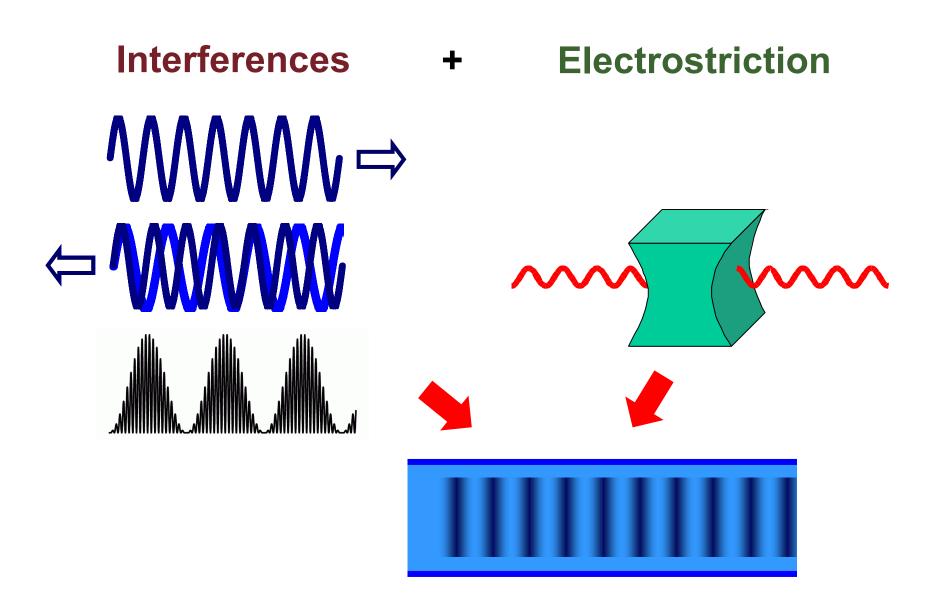
2 possibilities in single mode fibres: $\theta=0 \Rightarrow \Omega=0$

$$0 \rightarrow \Omega = 0$$

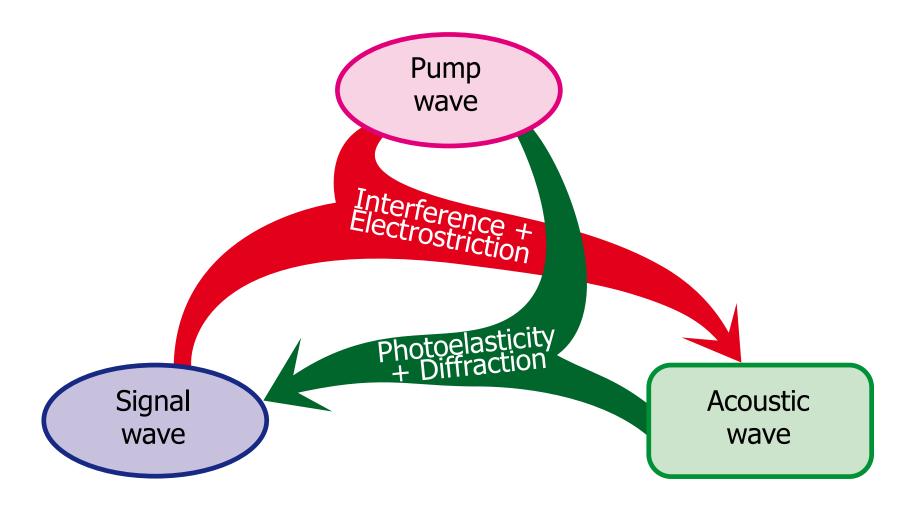
No effect, *no forward scattering*!

 $\theta = \pi \rightarrow \Omega = 2nV_a/\lambda_0$ Backward scattering, max. frequency shift

Mechanisms behind stimulated scatterings

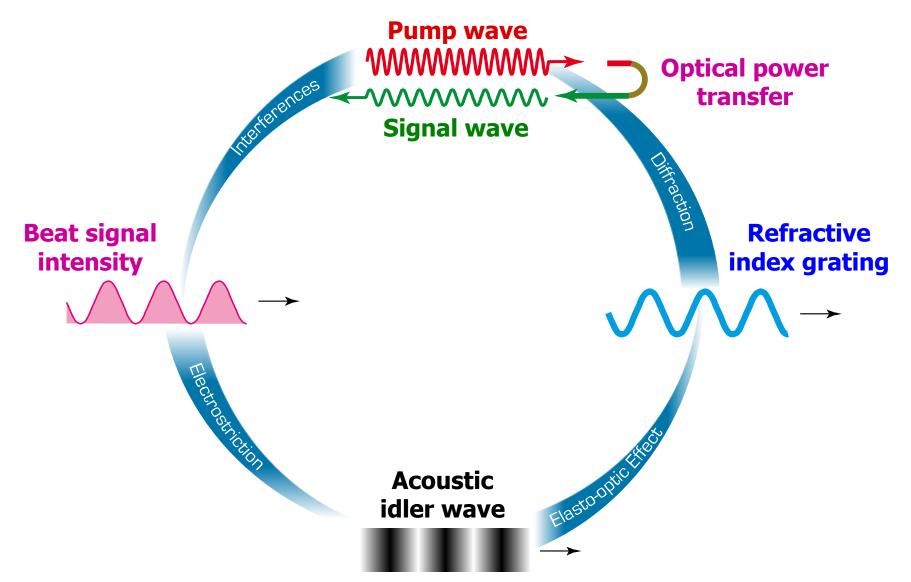


Principle of Brillouin stimulated scattering



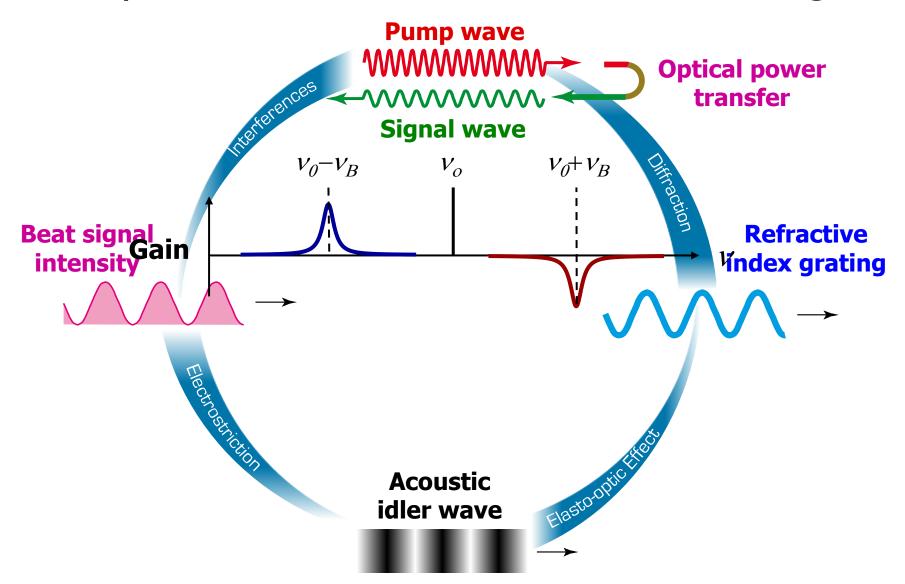
EPFL

Principle of Brillouin stimulated scattering



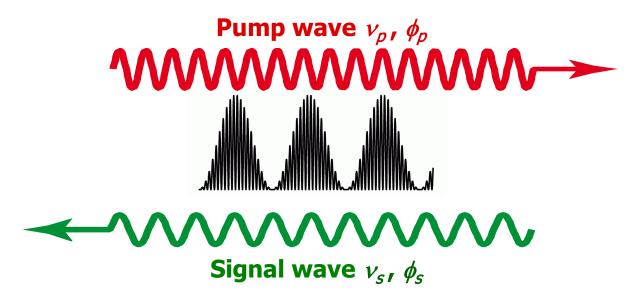
EPFL

Principle of Brillouin stimulated scattering



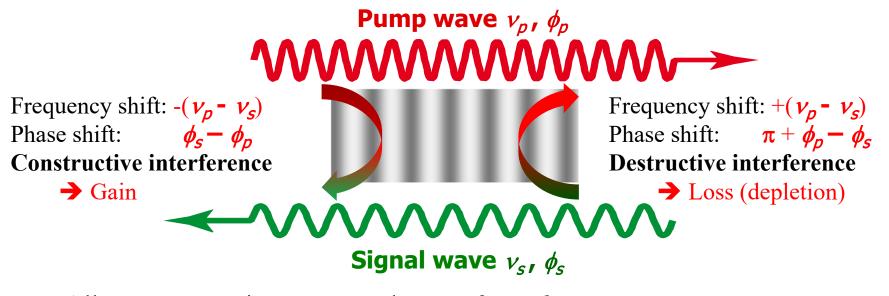
Grating picture of Brillouin scattering

In *steady state* conditions the *grating* formed by the acoustic wave through the *interference* of the pump and signal waves automatically creates a *matched coupling*.



Grating picture of Brillouin scattering

In *steady state* conditions the *grating* formed by the acoustic wave through the *interference* of the pump and signal waves automatically creates a *matched coupling*.



All wave properties are properly *transformed*, except:

- > Polarization of the incident wave is preserved
- The coupling can be temporarily unmatched due to the inertial response of the acoustic wave ($\tau \sim 12$ ns).

Stimulated Raman scattering

For a *forward* propagating pump and a *backward* signal the interaction is governed by the following set of coupled equations:

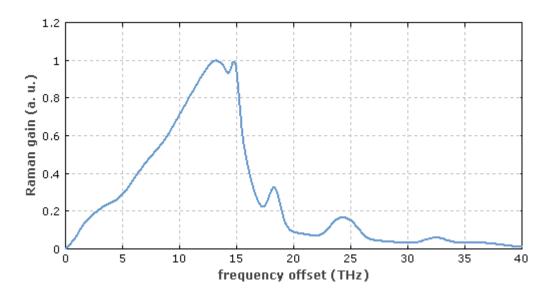
$$\begin{cases} \frac{dI_{P}}{dz} = -\frac{v_{P}}{v_{S}} g_{R} I_{P} I_{S} - \alpha_{P} I_{P} \\ \frac{dI_{S}}{dz} = -g_{R} I_{P} I_{S} + \alpha_{S} I_{S} \end{cases}$$

In absence of pump depletion:

$$I_{S}(L) = I_{S}(0)e^{g_{R}I_{P}(0)L_{eff}-\alpha_{S}L}$$

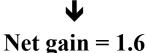
with
$$L_{eff} = (1 - e^{-\alpha_p L}) / \alpha_p$$

Nonlinear effective length



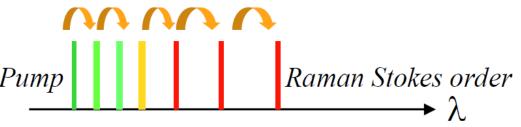
$$g_R \simeq 10^{-13} \frac{\text{m}}{\text{W}}$$

1 W of pump power through 1 km of fibre



Cascaded Raman generation

• Each generated
Stokes wave can act
as a pump to generate
an additional order





Stimulated Brillouin scattering

For a *forward* propagating pump and a *backward* signal the interaction is governed by the following set of coupled equations for the amplitudes:

$$\begin{cases} \frac{\partial A_p}{\partial z} + \frac{1}{V_g} \frac{\partial A_p}{\partial t} = i \frac{1}{2} g_2 A_s Q - \frac{\alpha}{2} A_p \\ \frac{\partial A_s}{\partial z} - \frac{1}{V_g} \frac{\partial A_s}{\partial t} = -i \frac{1}{2} g_2 A_p Q^* + \frac{\alpha}{2} A_s & \text{with} \quad \Gamma_A = i \frac{2\pi (v_B^2 - \Omega^2) - i \Omega \Gamma_B}{2\Omega} \\ \frac{\partial Q}{\partial t} + \Gamma_A Q = i g_1 A_p A_s^* & \text{Frequency detuning factor} \\ & \text{including a loss} \quad \Gamma_B = 1 / \tau_A \\ & \tau_A = \text{Acoustic lifetime} \end{cases}$$

Steady-state situation $(T >> \tau_A)$:

$$Q = i \frac{g_1}{\Gamma_A} A_p A_s^* \longrightarrow \begin{cases} \frac{\partial A_p}{\partial z} = -\frac{1}{2} \frac{g_1 g_2}{\Gamma_A} |A_s|^2 A_p - \frac{\alpha}{2} A_p \\ \frac{\partial A_s}{\partial z} = -\frac{1}{2} \frac{g_1 g_2}{\Gamma_A} |A_p|^2 A_s + \frac{\alpha}{2} A_s \end{cases} \longrightarrow \begin{cases} \frac{\partial I_p}{\partial z} = -g_1 g_2 \operatorname{Re}\{\frac{1}{\Gamma_A}\} I_s I_p - \alpha I_p \\ \frac{\partial I_s}{\partial z} = -g_1 g_2 \operatorname{Re}\{\frac{1}{\Gamma_A}\} I_p I_s + \alpha I_s \end{cases}$$

$$\begin{vmatrix} \frac{\partial I_p}{\partial z} = -g_1 g_2 \operatorname{Re} \{ \frac{1}{\Gamma_A} \} I_s I_p - \alpha I_p \\ \frac{\partial I_s}{\partial z} = -g_1 g_2 \operatorname{Re} \{ \frac{1}{\Gamma_A} \} I_p I_s + \alpha I_s \end{vmatrix}$$

$$g_1 g_2 \operatorname{Re} \left\{ \frac{1}{\Gamma_A} \right\} = \frac{4g_1 g_2}{\Gamma_B} \frac{(\Gamma_B / 2\pi)^2}{(\nu_B - \Omega)^2 + (\Gamma_B / 2\pi)^2} = g_B \frac{(\Gamma_B / 2\pi)^2}{(\nu_B - \Omega)^2 + (\Gamma_B / 2\pi)^2} = g(\Omega)$$

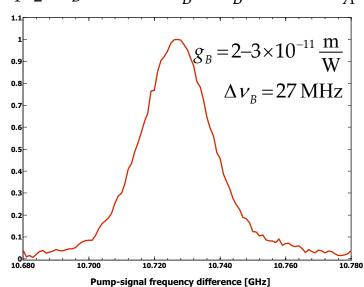
Lorentzian gain spectrum with
$$g_B = 4g_1g_2/\Gamma_B$$
 and $\Delta v_B = \Gamma_B/\pi = 1/\pi\tau_A$

In absence of pump depletion:

$$I_{S}(L) = I_{S}(0)e^{g_{B}I_{P}(0)L_{eff}-\alpha L}$$

with
$$L_{eff} = (1 - e^{-\alpha L}) / \alpha$$

Nonlinear effective length



Brillouin amplifier is a linear system

→ 2 appended fibers is equivalent to 1 fiber with the *summed* gain spectra:

$$g_{B1}(v)$$
 , L_1 $g_{B2}(v)$, L_2

$$I_{out}(v) = e^{g_{B2}(v)I_{Pump}L_2} e^{g_{B1}(v)I_{Pump}L_1} I_{in}(v) = e^{[g_{B1}(v)\frac{L_1}{L} + g_{B2}(v)\frac{L_2}{L}]I_{Pump}L} I_{in}(v) , \quad L = L_1 + L_2$$

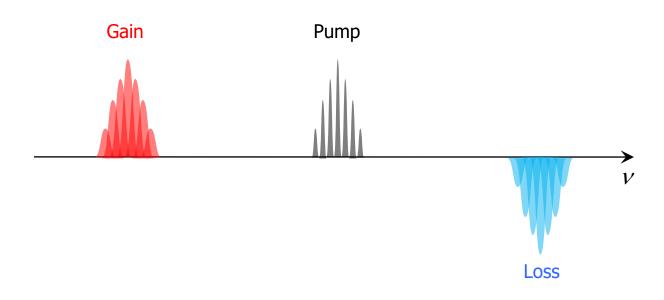
→ 2 pumps in 1 fibre is equivalent to 1 pump with the summed gain spectra:

$$I_{out}(v) = e^{g_{B1}(v) I_{P1}L + g_{B2}(v) I_{P2}L} I_{in}(v) = e^{[g_{B1}(v) \frac{I_{P1}}{I_{Pump}} + g_{B2}(v) \frac{I_{P2}}{I_{Pump}}]I_{Pump}L} I_{in}(v), \quad I_{Pump} = I_{P1} + I_{P2}$$

This description can be extended to N fibers and N pumps

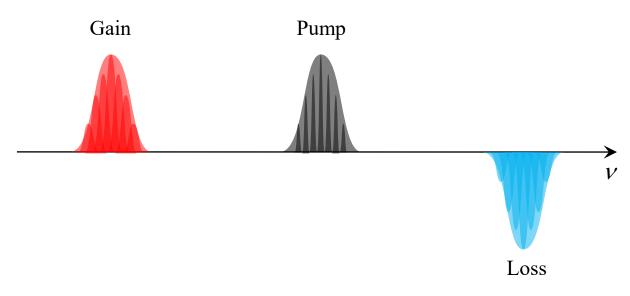
EPFL

Broadband Brillouin gain by pump modulation



EPFL

Broadband Brillouin gain by pump modulation



The *effective* gain/loss spectrum can be shaped by properly *modulating* the pump

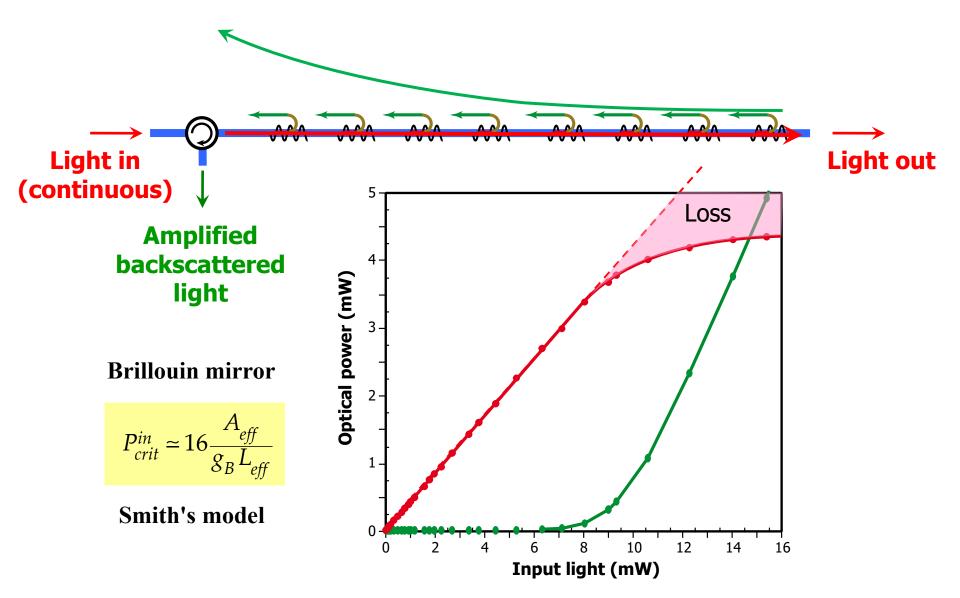
$$g_B^{eff}(v) = g_B(v) \otimes \frac{I_p(v)}{I_{pump}}$$

Convolution between the natural Brillouin gain and the pump spectra

Amplifiers based on stimulated scatterings

- Stimulated scatterings may realise the closest approximation of *fully* distributed amplification, considered as an ideal case.
- Raman-based amplifiers are very attractive: large bandwidth, wavelength flexibility and low noise. But: low gain → high pump power
- Brillouin-based amplifiers also show a good wavelength flexibility and give a much higher gain, but very limited bandwidth and poor noise figure.
- Noise is determined by the amount of *spontaneous scattering*, which is scaled by the *average number* of *thermally-created phonons* (0.14 per mode for Raman scattering, 570 per mode for Brillouin scattering).

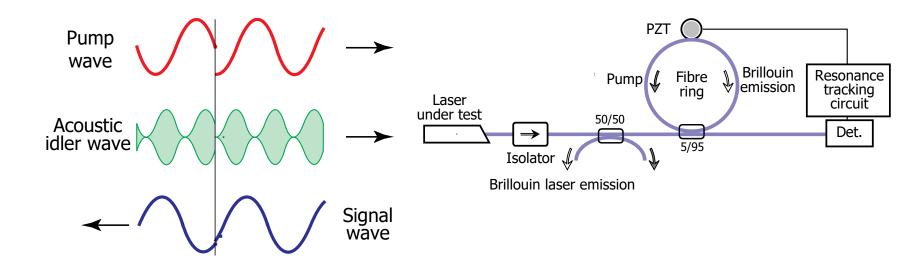
Brillouin limits the power handling capacity



EPFL

Raman and Brillouin lasers

- Lasers based on stimulated scatterings are easily realized by looping back an amplifier upon itself.
- *Raman*-based fibre lasers can generate light at wavelength well separated from the pump (new wavelength) and even using cascaded emission.
- *Brillouin*-based fibre lasers can show a sub-mW threshold and very high coherence (sub-kHz).



Brillouin Fibre Laser Gyroscope

